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Abstract Polyhedral representations of the geometric arrangements of atoms and
molecules is a pervasive tool in chemistry for understanding chemical bonding and
electrostatic interactions. Yet the structural organization within very large systems
is often difficult to quantify. In this work, we illustrate that PageRank, when com-
bined with the chemical constraints of a system, can be used to uniquely identify
the polyhedral arrangements of atoms and molecules. The PageRank algorithm can
be used on any network that can be represented as a graph: a mathematical object
where individual points, or vertices, are joined by edges. It is thus well-suited for
chemical systems where atoms (considered vertices) are connected to each other via
chemical bonding (considered edges) or other forces. This has been implemented in a
recently reported series of R-scripts, moleculaRnetworks, and the example provided
herein illustrates that the polyhedral arrangement of solvent molecules about a solute
results in a unique PR value for the solute and enables rapid identification of the local
geometry in the condensed medium. More generally PR can be used as a chemoinfor-
matic tool to search for specific structural patterns within any database of geometric
configurations.
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1 Introduction

Statistical mechanical (SM) simulations provide a wealth of data regarding the ensem-
ble of atomic positions that are populated for a system under a set of experimental
conditions. Most often chemists are interested in the local geometric arrangements of
atoms and molecules, whose tendency to form polyhedral structures is a well known
result of the underlying physics associated with chemical bonding and electrostatic
interactions. The interpretation of SM data for this purpose is often done in a direct
(visual) manner and few algorithms exist for an automated approach toward struc-
tural characterization. In a recent work, we reported the moleculaRnetworks series of
R-scripts for the post-processing of SM data and the study of solvent structure about
solutes [1]. Applications of this code have investigated the solvent shell structure and
exchange processes of mono-, di-, and trivalent metal cations in water [2]. An essen-
tial aspect of moleculaRnetworks is the utilization of the PageRank (PR) algorithm to
identify the connectivity and organization of atomic/molecular networks. PR is best
known for its implementation in the Google internet search engine to assign numer-
ical weighting to each element of a hyperlinked set of documents [3]. However, the
PageRank algorithm can be used on any network that can be represented as a graph:
a mathematical object where individual points, or vertices, are joined by edges. The
success of moleculaRnetworks is in the application of PR to graphs formed from “con-
necting the dots” between atomic positions as a means of identifying the polyhedral
arrangements of those atoms. In this work, we demonstrate the uniqueness of the
PR to a given graph. In combination with the known behavior of chemical systems
and the natural constraints therein, the graphs formed in moleculaRnetworks become
restricted to those representing convex polyhedra, and thus the PR becomes a new
identifying tool for characterizing local geometry.

2 Method

As reported in [3], the normalized PageRank formula that is implemented for ranking
internet web-pages is:

PR(pi ) = 1 − d

N
+ d

∑

p j ∈M(pi )

PR(p j )

L
(

p j
)

where the set of pages is {p1, p2, . . . , pN }, the value PR(pi ) denotes the page rank
of page pi , L

(
p j

)
is the number of outgoing links from page p j , and M(pi ) is the set

of pages that link to page pi . If a page p j has no outgoing links (is a “sink” page),
then we assume L

(
p j

) = N and p j ∈ M(pi ) for all i . This emulates a surfer picking
a random page when they are finished with a page that contains no links. The value of
d represents the probability that a surfer follows a link on the page he/she is on. The
term (1 − d)/N represents the probability of a surfer beginning a new surfing session
on page pi ; the 1 − d factor is the probability of beginning a new surfing session and
the 1/N factor represents the probability of choosing page at random. To adopt this
convention to a system of atoms, the index {p1, p2, . . . , pN } merely becomes the list
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of atoms {1, 2, . . . , N }, the page rank of atom i becomes PR(i) and and the number
of connections from the atoms j that are connected to i is L( j). Thus, the PR of atom
i is determined not only by the number of connection it has to atoms j , but also each
j’s connectivity to other atoms in the network/graph. The definition of a “connection”
is modulated by the radial cutoff from atom i that obeys the definition of the chemical
phenomena under investigation. If only the immediate geometry of the atom i is being
considered, the cutoff would include only atoms that are directly bonded to i . Alterna-
tively, non-bonded interactions may be considered, such as H-bonding, in which case
a typical H-bond distance could be used. In the case of statistical mechanical data, the
cutoff values can be determined from the pair distribution function (PDF) between the
atom types of interest.

Let �1 represent the all-ones vector and M represent the matrix whose entries are

Mi, j =
{

1/L( j), if i ∈ M( j)
0, otherwise.

Then the vector �r = [PR(1) , PR(2) , . . . , PR(n)]T is a solution to �r = 1−d
N

�1+d M�r .
Alternatively, �r solves (I − d M) �r = 1−d

N
�1. Since M is a stochastic matrix, the moduli

of its eigenvalues are bounded above by 1 and so is invertible for any 0 ≤ d < 1.
Thus, �r = 1−d

N (I − d M)−1 �1. The above discussion allows us to conclude that the
PageRank vector �r represents a unique solution to the equation �r = 1−d

N
�1 + d M�r .

Thus, if we are able to demonstrate that a given vector solves the equation, then we
will not have to be concerned that some other vector is a solution as well. This amounts
to the demonstration that the PR of atom i , whose connected atoms form a polyhedral
geometry about i is distinct for different n-vertex polygons. While this will be shown
not to be the case for simple point charges, the known physical constraints of chemical
systems cause this to be true in practice (vide infra).

In chemical systems the linking is symmetric, i.e., if i is connected to j, then j is
connected to i. Let’s also assume there are no isolated (non-bonded) atoms. In this
case, we let G be a graph whose vertices are the atoms i and where two vertices
are joined by an edge if and only if the atoms they represent are “connected”. Sup-
pose A is the adjacency matrix for G and D̃ is the diagonal matrix whose diagonal
entries are D̃ii = 1/di , the reciprocal of the degree di of vertex i. Then it is a routine
computation to verify that M = AD̃. Another routine computation verifies that if
�q = [d1, d2, . . . , dN ]T then M �q = AD̃�q = A�1 = �q . Thus, the vector containing
the degrees of the vertices is an eigenvector of M with eigenvalue 1. Ultimately, this
means that the solution vector �r = �r(d) to the equation �r = 1−d

N
�1+d M�r must satisfy

�r(1) = 1

d1 + d2 + · · · + dN

⎡

⎢⎢⎢⎣

d1
d2
...

dN

⎤

⎥⎥⎥⎦ .

We obtain the following result:
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Theorem 1 Suppose atomic connections are symmetric and suppose �r(d) is the solu-
tion vector to both equations �r = 1−d

N
�1 + dM�r and �r = 1−d

N
�1 + dK�r . Then the

underlying graphs for M and K must have the same degree sequences.

It is not safe to conclude that the underlying graphs are isomorphic. Consider any
k- regular graph G with n vertices. We form the graph G ′ by adjoining to G another
vertex un+1 and forming edges joining un+1 to every vertex in G ′. The matrix for G ′
will have entries

Mr,c =
⎧
⎨

⎩

0, vertices ur and uc are not adjacent
1/(k + 1), vertices ur and uc are adjacent, c < n + 1
1/n, c = n + 1, r < n + 1

In block form,

M =
[

(k + 1)−1 A n−1�1
(k + 1)−1 �1T 0

]

where A is the adjacency matrix for G. We observe that �1 ∈ R
n is an eigenvector for

with eigenvalue k.
Now, we consider determining the value of α that solves the equation

d M

[
α�1

1 − nα

]
+ 1 − d

n + 1

[ �1
1

]
=

[
α�1

1 − nα

]
.

Expanding the left-hand side, we obtain

d M

[
α�1

1 − nα

]
+ 1 − d

n + 1

[ �1
1

]

= d

[
(k + 1)−1 A n−1�1
(k + 1)−1 �1T 0

] [
α�1

1 − nα

]
+ 1 − d

n + 1

[ �1
1

]

= d

[
α (k + 1)−1 A�1 + (1 − nα) n−1�1

αn (k + 1)−1

]
+ 1 − d

n + 1

[ �1
1

]

=
[ (

dαk (k + 1)−1 + d (1 − nα) n−1 + (1 − d) (n + 1)−1) �1
dαn (k + 1)−1 + (1 − d) (n + 1)−1

]

which means we seek α such that

dαk(k + 1)−1 + d(1 − nα) n−1 + (1 − d) (n + 1)−1 = α

dαn(k + 1)−1 + (1 − d) (n + 1)−1 = 1 − nα.

Solving the first equation for α yields

α

(
1 + d − dk

k + 1

)
= d

n
+ 1 − d

n + 1
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α
1 + d + k

k + 1
= n + d

n(n + 1)

α = (n + d) (k + 1)

n (n + 1) (d + k + 1)
.

As a check, solving the second equation for α yields

α

(
dn + n(k + 1)

k + 1

)
+ 1 − d

n + 1
= 1

α
n(d + k + 1)

k + 1
= n + d

n + 1

α = (n + d) (k + 1)

n (n + 1) (d + k + 1)

which verifies our answer from the first equation. Thus, with �r =
[

α�1
1 − nα

]
where

α = (n+d)(k+1)
n(n+1)(d+k+1)

, the equation

dM�r + 1 − d

n + 1
�1 = �r

is solved. From the previous discussion, this is the unique solution to this equation.
We note that the entries of �r sum to 1, and so we have produced a PageRank vector. We
observe that this PageRank vector is the same if we begin with any regular graph on n
vertices, so two such graphs cannot be distinguished by this process. As an example,
suppose G1 is a six-membered ring with atom i in the center and G2 is has two disjoint
three-membered rings above and below the plane of i as in Fig. 1.
Letting A1 and A2 be their adjacency matrices and M1 and M2 be the associated
M-matrices, we have

Fig. 1 Cyclic six-membered ring versus two disjoint triangles connected to a single point/atom in a regular
graph
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M1 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1/3 0 0 0 1/3 1/6
1/3 0 1/3 0 0 0 1/6
0 1/3 0 1/3 0 0 1/6
0 0 1/3 0 1/3 0 1/6
0 0 0 1/3 0 1/3 1/6

1/3 0 0 0 1/3 0 1/6
1/3 1/3 1/3 1/3 1/3 1/3 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

M2 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1/3 1/3 0 0 0 1/6
1/3 0 1/3 0 0 0 1/6
1/3 1/3 0 0 0 0 1/6
0 0 0 0 1/3 1/3 1/6
0 0 0 1/3 0 1/3 1/6
0 0 0 1/3 1/3 0 1/6

1/3 1/3 1/3 1/3 1/3 1/3 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We have n = 6, k = 2 and α = (n+d)(k+1)
n(n+1)(d+k+1)

= d+6
14d+42 . The vector

�r = 1

14d + 42

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

d + 6
d + 6
d + 6
d + 6
d + 6
d + 6

8d + 6

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

solves both equations dM1�r + 1−d
7

�1 = �r and dM2�r + 1−d
7

�1 = �r .
The above example is of course only valid for structures that have exactly the same

degree sequence. Examples where this may occur include: (a) identical isolated mol-
ecules or clusters where two configurations are energetically favorable (as proposed
in Fig. 1) or, (b) a perfectly repeating periodic crystal of both symmetries. In both
of these cases, the definition of a “connection” is well-defined, the radial cutoff from
the central atom terminates beyond the bounds of the cluster in the first case, and is
dictated by the periodic boundary of the crystal in the second. However, in most chem-
ical applications such equivalent degree sequences are incredibly difficult to achieve.
When more realistic chemical systems come under investigation, where the vertices of
the polygon are themselves part of an extended network of connectivity, and where an
ensemble of configurations are being considered (as is the case for statistical mechan-
ical data) the probability of having the same degree sequence for different polyhedral
arrangements becomes quite small. The chemical constraints of the system also help
to ensure that the PR of an atom becomes a unique identifier of local structure in
practical applications.

As an example, let us consider a prototypical system for analysis using the molec-
ulaRnetworks scripts which incorporate PR as a means to identify molecular struc-
tures from statistical mechanical simlations. In the case of an ion immersed in water,
H2O molecules form concentric shells of solvation about the ion and the ion-dipole
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interaction in the immediate vicinity of the ion (the first solvation shell) causes the H2O
to be highly organized. The classical approach for characterizing the solvation shell is
by means of a pair distribution function (PDF) between the ion center and the O-atom
of water, which will have at least one well-defined peak that when integrated, produces
the “coordination number” (CN) of the ion. The first peak in the PDF indicates that
the waters in the first solvation shell are distributed about a maximally probable radial
distance. Moreover, since the solvent molecules repel one another equally they will
be distributed roughly uniformly on a sphere of radius r , and thus may be mapped to
a convex polyhedron. Planar solvation shells as might be inferred from the hexagon in
Fig. 1 are nonsensical in a chemical system such as this (e.g. they would have a huge
cavitation energy).

We are interested in the PR of the ion and as such consider the connection between
the first solvation shell O-atoms and the ion, as well as the intermolecular connections
between O-atoms. Thus, the relevant graphs for this chemical system are star graphs.
Each graph in moleculaRnetworks begins as a star graph, with connections between
each solvent molecule (as defined by atomic position) and the central solute. Upper
and lower bounds to the length of this connection are established by examination of
the pair distribution function. The lower bound is dictated by the repulsive part of the
potential that describes the ion-water interaction (governed by the hard-sphere radius
of each atom), while the upper bound is the boundary between the first and second
concentric solvation shells about the ion (which appear as separate peaks in the pair
distribution function). Next, edges are formed between water O-atom vertices if the
distance between them is less than or equal to a cutoff distance, which we have taken
to be the side of the largest cube fitting into a sphere of radius r with r less than the
first minimum of the pair distribution, but greater than the first maximum. This does
two things. First, it forms the polyhedral skeleton without edge crossings through the
center of the graph or behind other water vertices, as such edges would not be present
in a convex polyhedron. Second, it limits the number of edges had by an individual
vertex, such that we need not worry about excessively large numbers of edges. The
use of the cutoff distance as a chemical constraint for edge formation can also alter
the number of edges for each vertex. For example, if a planar hexagon solvation shell
were to be present in solution and at the same time a solvation shell with three H2O
arranged above and below the plane of the ion, as in Fig. 1, then the cutoff distance is
chosen to be large enough that at least one edge is formed between the top and bottom
triangles, as illustrated in Table 1. Thus, as implemented in moleculaRnetworks, the
disjoint triangles in Fig. 1 become identified as a trigonal biprismatic polygon when
the top and bottom triangles are sufficiently close to one another, and the two sol-
vation environments will yield distinct PR values for the central ion due to different
degree sequences now being present. As another example, consider the trigonal prism
and octahedron (Table 1) which both have CN = 6 for the central ion. Provided that
the number of edges at each vertex is different for the two forms—for the prism, 3,
and for the antiprism, 4—the introduction of the ion “breaks” the regularity of the
graphs, altering their degree sequences and PR, thus allowing the two forms to be
distinguished.

The calculated PR of the central ion based upon these chemical constraints and the
limitations of a star graph are shown in Table 1 for four- to six-vertex polyhedra. Note

123



J Math Chem (2012) 50:2342–2350 2349

Table 1 PageRank of the
central ion for N-vertex
polyhedra (N = 4–6)

Number of vertices Polygon name Shape PageRank

4 Square 0.2441558

4 Tetrahedron 0.200000

5 Square pyramid 0.1892430

5 Trigonal bipyramid 0.1772388

5 Wedge 0.2035064

6 Octagon 0.1636142

6 Pentagonal pyramid 0.1822820

6 Trigonal prism 0.1929308

that in instances where atomic positions fluctuate such that their distance is greater
than the cutoff, the polyhedra database within moleculaRnetworks also includes the
PRs of graphs with one or two edges missing, so that structures can be matched when
a water is slightly beyond the cutoff. To list them all is beyond the scope of this work,
but we note one example in the “wedge,” which is not a proper convex polyhedron,
but rather an arrangement gleaned from the MD data of multiple ions in water sol-
vent, in which one water vertex has only two edges. As an example, in our prior
work [1,2], we performed an analysis of 1ns of MD data of Na+ion immersed in 216
TIP3P water molecules. Through the application of moleculaRnetworks, the geometry
in the first solvation shell, Na(H2O)+5 , was identified in 99.4 % of configurations. The
5-coordinated ion was found in the square pyramidal geometry 53.6 % of the time, and
in the triangular bipyramid and “wedge” 9.3 and 36.6 % of the time. This indicates
that nearly all of the 5-vertex polyhedra are identifiable.
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3 Conclusions

Chemical structures or networks that have exactly the same degree sequence are shown
to have the same PageRank. However, exploitation of chemical constraints can ensure
the construction of non-regular graphs with unique PR. For the example provided,
matching the PR of the graphs from statistical mechanical data to the PR in a database
of ideal polyhedra (as is done in moleculaRnetworks), can reduce the complicated
problem of identification of solvent organization to the easy application of a graph-
theoretic algorithm. The example provided herein presents a useful tool for the analysis
of SM data of a wide array of systems, from biological solutes like proteins, to reac-
tive species in solution within chemistry and chemical engineering. Keep in mind that
the PR is unique for different degree sequences of a system, and thus can be used
as a fingerprint of solvent organization even if the solvent is does not form convex
polyhedra as in the example presented. Indeed, more generally PR can be used as
a chemoinformatic tool to search for specific structural patterns within any database
of geometric configurations. In this respect, the PR and the connectivity information
contained within the M matrix could be used in a similar way to the Morgan algorithm
that was so instrumental in the early development of the Chemical Abstracts Service
for assigning unique identifying labels to different chemical structures [4].
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